skip to main content


Search for: All records

Creators/Authors contains: "Allen, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dudley, Edward G. (Ed.)
    Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. 
    more » « less
    Free, publicly-accessible full text available July 26, 2024
  2. Abstract

    Clinical response to adoptive T cell therapies is associated with the transcriptional and epigenetic state of the cell product. Thus, discovery of regulators of T cell gene networks and their corresponding phenotypes has potential to improve T cell therapies. Here we developed pooled, epigenetic CRISPR screening approaches to systematically profile the effects of activating or repressing 120 transcriptional and epigenetic regulators on human CD8+T cell state. We found that BATF3 overexpression promoted specific features of memory T cells and attenuated gene programs associated with cytotoxicity, regulatory T cell function, and exhaustion. Upon chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. Moreover, BATF3 enhanced the potency of CAR T cells in both in vitro and in vivo tumor models and programmed a transcriptional profile that correlates with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens that defined cofactors and downstream mediators of the BATF3 gene network.

     
    more » « less
  3. Abstract

    Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2for up to four days.Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.

     
    more » « less
  4. Teacher self-efficacy (SE) has been observed to be an 'important construct for Computer Science (CS) teachers' professional development because it can predict both teaching behaviors as well as student outcomes" [1]. The purpose of the present study was to investigate teacher CS SE during a two-year federally funded professional development (PD) and curriculum development project for middle school teachers incorporating game-design and the Unity development platform. The research question investigated is: How does teacher self-efficacy for teaching computer science via game design with the Unity game development platform change during a year-long PD program? Investigations of teacher SE for teaching CS have resulted in some surprising results. For example, it has been reported that - There were no differences in self-efficacy based on teachers' overall level of experience, despite previous findings that teacher self-efficacy is related to amount of experience" and "no differences in self-efficacy related to the teachers' own level of experience with CS" [2], thus further study of CS teacher SE is warranted. Participants in this study were six middle school teachers from four middle schools in the southeastern United States. They participated in a year-long PD program learning the Unity game development platform, elements of game design, and foundations of learner motivation. Guided reflective journaling was used to track the teachers' SE during the first year of the project. Teachers completed journal prompts at four intervals. Prompts consisted of questions like "How do you currently feel about your ability to facilitate student learning with Unity?" and "Are you confident that you can implement the materials the way the project team has planned for them to be implemented?" Prior to beginning the project participants expressed confidence in being able to facilitate student learning after participating in the planned professional development, but there was some uneasiness about learning and using Unity. From a SE perspective their responses make sense, as all of the participants are experienced teachers and should have confidence in their general ability to teach. However, since Unity is a new programming environment for all of the teachers, they did not have the prior experience necessary to have a high degree of confidence that they could successfully use it with their students. 
    more » « less
  5. Abstract

    Production and use of proteins is under strong selection in microbes, but it is unclear how proteome-level traits relate to ecological strategies. We identified and quantified proteomic traits of eukaryotic microbes and bacteria through an Antarctic phytoplankton bloom using in situ metaproteomics. Different taxa, rather than different environmental conditions, formed distinct clusters based on their ribosomal and photosynthetic proteomic proportions, and we propose that these characteristics relate to ecological differences. We defined and used a proteomic proxy for regulatory cost, which showed that SAR11 had the lowest regulatory cost of any taxa we observed at our summertime Southern Ocean study site. Haptophytes had lower regulatory cost than diatoms, which may underpin haptophyte-to-diatom bloom progression in the Ross Sea. We were able to make these proteomic trait inferences by assessing various sources of bias in metaproteomics, providing practical recommendations for researchers in the field. We have quantified several proteomic traits (ribosomal and photosynthetic proteomic proportions, regulatory cost) in eukaryotic and bacterial taxa, which can then be incorporated into trait-based models of microbial communities that reflect resource allocation strategies.

     
    more » « less
  6. Abstract

    The ecological and oceanographic processes that drive the response of pelagic ocean microbiomes to environmental changes remain poorly understood, particularly in coastal upwelling ecosystems. Here we show that seasonal and interannual variability in coastal upwelling predicts pelagic ocean microbiome diversity and community structure in the Southern California Current region. Ribosomal RNA gene sequencing, targeting prokaryotic and eukaryotic microbes, from samples collected seasonally during 2014-2020 indicate that nitracline depth is the most robust predictor of spatial microbial community structure and biodiversity in this region. Striking ecological changes occurred due to the transition from a warm anomaly during 2014-2016, characterized by intense stratification, to cooler conditions in 2017-2018, representative of more typical upwelling conditions, with photosynthetic eukaryotes, especially diatoms, changing most strongly. The regional slope of nitracline depth exerts strong control on the relative proportion of highly diverse offshore communities and low biodiversity, but highly productive nearshore communities.

     
    more » « less
  7. Micronutrients control phytoplankton growth in the ocean, influencing carbon export and fisheries. It is currently unclear how micronutrient scarcity affects cellular processes and how interdependence across micronutrients arises. We show that proximate causes of micronutrient growth limitation and interdependence are governed by cumulative cellular costs of acquiring and using micronutrients. Using a mechanistic proteomic allocation model of a polar diatom focused on iron and manganese, we demonstrate how cellular processes fundamentally underpin micronutrient limitation, and how they interact and compensate for each other to shape cellular elemental stoichiometry and resource interdependence. We coupled our model with metaproteomic and environmental data, yielding an approach for estimating biogeochemical metrics, including taxon-specific growth rates. Our results show that cumulative cellular costs govern how environmental conditions modify phytoplankton growth. 
    more » « less